

White Paper: Cost Savings with SARAHAI-FACILITIES for Facility Managers Optimizing Operations & Reducing Costs with AI-Driven Digital Twins Developed by Tensor Networks Inc. | All Rights Reserved

1. Executive Summary

Facility managers face **rising operational costs** due to **inefficient energy use, underutilized spaces, and reactive maintenance strategies**. SARAHAI-FACILITIES offers a **cutting-edge AI-driven Digital Twin** that leverages **Pattern-of-Life (PoL) analytics, Kernel Density Estimation (KDE), real-time weather integration, and agentic AI automation** to **reduce costs, improve efficiency, and optimize building management**.

By analyzing occupancy trends, automating HVAC and lighting controls, optimizing maintenance schedules, and leveraging machine learning for predictive analytics, SARAHAI-FACILITIES helps facility managers achieve up to 30% savings on operational costs.

2. Challenges in Facility Management

2.1 Rising Operating Expenses

- Energy consumption accounts for 30-50% of building operational costs.
- Inefficient HVAC control leads to unnecessary heating, cooling, and lighting expenses.
- Reactive maintenance results in higher repair costs and unexpected equipment failures.

2.2 Lack of Data-Driven Decision Making

- Traditional building management systems (BMS) often lack real-time analytics.
- Occupancy patterns are **not fully leveraged**, leading to **poor space utilization**.
- Maintenance schedules are **fixed**, **not predictive**, increasing **downtime and labor costs**.

2.3 Inefficient Space Utilization

- Unoccupied rooms and **underutilized spaces** result in **wasted energy and resources**.
- Meeting rooms, offices, and common areas **operate on fixed schedules**, rather than **actual demand-based usage**.

3. How SARAHAI-FACILITIES Solves These Challenges

SARAHAI-FACILITIES provides a data-driven, AI-powered Digital Twin that enables predictive, automated, and cost-efficient facility management.

3.1 Cost Savings via AI-Driven Energy Optimization

Feature	Cost-Saving Impact
PoL-Based Occupancy Tracking	Reduces unnecessary energy usage by automatically adjusting HVAC & lighting based on real-time demand.
HVAC Thermal Modeling	Prevents overcooling/heating, cutting energy bills by 15-30%.
Real-Time Weather Integration	Adjusts indoor climate settings dynamically , reducing heating/cooling costs.
Auto-Managed Setpoints	Learns optimal temperature & lighting settings , reducing excess consumption .

Example: A **50,000 sq. ft. commercial building** implementing **PoL-driven HVAC adjustments** could save **\$40,000+ annually** in energy costs.

3.2 Predictive & Preventive Maintenance Reduces Repair Costs

- Al-Powered Predictive Maintenance Identifies equipment issues before failures occur.
- Machine Learning Calibration Optimizes maintenance schedules to prevent unnecessary repairs.

• Dynamic Work Orders – Automates janitorial and maintenance task assignments based on real-time building usage.

Example: A facility using **predictive maintenance** can reduce **repair costs by 25-40%** and **extend equipment lifespan by 20%**.

3.3 Improved Space Utilization & Resource Allocation

Feature	Impact on Facility Costs
Occupant Flow	Identifies underutilized rooms and redistributes space
Optimization	usage to avoid wasted resources .
Poisson-Based Occupant	Adapts janitorial schedules to actual facility usage,
Modeling	reducing labor costs .
Adjacency-Based Occupant Movement	Reduces crowding & congestion, improving building efficiency.

Example: Optimizing conference room usage in a **corporate office** could **increase space efficiency by 30%**, reducing the need for additional real estate.

3.4 Data-Driven Decision Making for Cost Reduction

AI Capability	How It Saves Money
KDE-Based Facility Usage	Reduces operational waste by identifying patterns of
Modeling	inefficiency.
Agentic AI for Facility Management	Automates facility adjustments , cutting down manual labor and mismanagement.
Pattern-of-Life (PoL)	Improves long-term facility planning , reducing excess
Behavioral Analytics	capacity and over-provisioning.

Example: A university implementing **PoL-based class scheduling** could **reduce classroom energy waste by 25%**, saving **thousands in annual costs**.

4. Real-World Savings with SARAHAI-FACILITIES

4.1 Commercial Buildings & Offices

- Energy savings: \$1.00-\$2.00 per sq. ft. per year
- Predictive maintenance savings: \$0.50 per sq. ft. per year
- Space optimization efficiency: 20-30% reduction in wasted office space

4.2 Hospitals & Healthcare Facilities

- Optimized HVAC & medical equipment scheduling reduces wasteful energy usage by 25%.
- Al-powered cleaning schedules lower janitorial costs by 20%.
- Predictive maintenance of medical equipment reduces unexpected downtime.

4.3 Universities & Schools

- PoL-based class scheduling saves 30% in HVAC and lighting costs.
- Predictive maintenance prevents high-cost emergency repairs.
- Smart occupancy monitoring ensures energy-efficient lecture halls.

5. Conclusion: Why Facility Managers Need SARAHAI-FACILITIES

- Reduces energy costs by 15-30%
- Cuts maintenance expenses by 25-40%
- Improves space utilization by 20-30%
- 🗹 Optimizes janitorial staffing & scheduling
- Enhances predictive decision-making with AI & PoL analytics

By leveraging **AI-driven automation**, **PoL-based facility optimization**, **and predictive analytics**, **SARAHAI-FACILITIES** is the **most advanced cost-saving solution** for facility managers looking to **enhance operational efficiency**, **lower costs**, **and maximize space utilization**.

Contact Tensor Networks Inc. today to integrate AI into your facility management strategy! 🚀

Email: information@tensornetworks.net

Website: www.SARAHAI.net

© Tensor Networks Inc. | All Rights Reserved